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Short Papers

On the Location of Leaky Wave Poles for a Grounded
Dielectric Slab

Chung-I G. Hsu, Roger F. Harrington, Joseph R. Mautz,
and Tapan K. Sarkar

Abstract —A simple numerical procedure is implemented to find the
loci of the TE and TM leaky wave poles for a grounded dielectric slab as
the frequency or the thickness varies. Information on how these complex
poles’ are distributed is very important when various deformed integra-
tion paths for Sommerfeld integrals are considered.

I. INTRODUCTION

It is well known that the electromagnetic fields arising from a
dipole in a layered medium in an open region can be expressed
in terms of an improper integral [1] to account for the continu-
ous spectra. In order to perform this integration accurately and
efficiently, the integration path must be deformed off the real
axis in some cases. Various deformed paths have been con-
sidered by many researchers, e.g., Newman and Forrai {2],
Michalski and Zheng [3], Fang and Chew [4], and Sarkar [5], to
name but a few. For half-space problems, there are only two
surface wave poles located on either sheets I and IV or sheets II
and II of the Riemann surface [3), [6), depending on the
constitutive parameters of the two media. For a grounded di-
clectric slab, besides a finite number of surface wave poles,
there are an infinite number of leaky wave poles [7]-[9]. If the
branch cut is properly chosen [3], [7], [9], then all the surface
wave poles are located on the top sheet (proper sheet, or sheet
), whereas all-the leaky wave poles are located on the bottom
sheet (improper sheet, or sheet II) of the Riemann surface. The
locations of the leaky wave poles are immaterial if the integra-
tion path stays on sheet I. In order to improve the computa-
tional efficiency, deforming the path to sheet II is desirable in
some cases, €.g., the steepest descent method of integration for
far fields, where part of the path enters sheet II [9], [10], [13]. In
this case, precise information on how these leaky wave poles are
distributed is very important unless the residues of these leaky
wave poles are negligible. Some researchers [10], [11], when
applying the steepest descent method of integration or its ap-
proximate version, the so-called saddle point method, only take
into account surface wave poles. It is clear from the next section
that their results are correct if the dielectric slab is thin and if
the observation point is not too close to the interface. However,
when the thickness of the slab is moderate or when the observa-
tion point is close to the interface, some of the leaky wave poles,
not too far away from the saddle point, may have been captured.
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Fig. 1. The grounded dielectric slab.

The locations of the TE or TM leaky wave poles can be found
by solving for the roots of two simultancous transcendental
equations [7], [9]; which are then mapped to the complex plane
of the integration variable. Although standard root searching
routines could be applied, we gain no idea how these roots are
distributed in the complex plane, since there are an infinite
number of them for a given frequency. It is the purpose of this
short communication to give a simple numerical procedure for
finding the loci of the leaky wave poles as the frequency or the
thickness varies. Thus, this gives us the desired information.

II.. Root Loci

The geometry of the grounded dielectric slab is shown in Fig.
1. For simplicity, we. assume that the slab is nonmagnetic and
lossless. The constitutive parameters for the half space and the
slab are (g, uo) and (ege,, ug), respectively. The thickness of
the slab is d. The locations of the surface and leaky wave poles
are the roots of [9], [10], [12]

Dyp= V1= € +y/e,— € cot (e, — 2 kod) (1)
for the TE case and
Doy = jeV1— €2 = /e, — &2 tan(\/e,—gékod) (2)

for the TM case. Here, & is the normalized parameter such that
k, =&k, is the transverse wavenumber or integration variable
for the Sommerfeld integral in terms of a transmission line
representation in the z direction [9], [10], where z is perpendic-
ular to the interface. For convenience, the branch cut is chosen

to be the line such that Im{y/1—£2}=0 (3], [9], [10], [13], as
shown in Fig. 2. When this branch cut is chosen, the roots of (1)
and (2) on sheets I and II of the complex ¢ plane are the
surface wave and leaky wave poles, respectively. It is well known
that the surface wave poles are real and confined to the region
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Fig. 2. Stecpest descent paths in the complex ¢ plane for different
observation angles, where the solid line is on the top sheet, the dotted
line is on the bottom sheet, and the zigzag line is the branch cut.

1<¢ <‘/ej , and there are a finite number of them [10], [12].
Furthermore, it can be shown that the leaky wave poles assume
both real and complex values, and there are an infinite number
of them [7], [9]. Note that in [14], the wave corresponding to the
leaky wave pole of purely real value is specifically termed open
mode. It is understood that the magnitude of the leaky mode
increases with z. A source within the slab must excite many
leaky modes, which in turn interfere destructively to ultimately
generate decreased response as z increases [14]. A simple
graphical procedure [9], [12] can be employed to find the real
roots of (1) and (2), as shown in Fig. 3(a) and (b), respectively. In
these two figures, ’

X=kyd\Je,—€* and B=kydye,—1. 3)

The intersecting points on the upper and the lower parts are
related to the surface and leaky wave poles on the real ¢ axis,
respectively. Although there are infinitely many branches of
curves for a tangent or cotangent function, only six of them are
plotted here.

There is only one pole associated with curve I in Fig. 3(a). It
is a surface wave pole if B> 7 /2 and a leaky wave pole in the
regions 1<§<\/Z or \/e_,<§<00if1<B<77'/20r0<B<1,
respectively [7], [9]. Likewise, the pole associated with curve 7 in
Fig. 3(b) is always a surface wave pole. Clearly, there are two
poles associated with the rest of the curves in both figures. As
an illustration, let curve 2 in Fig. 3(a) be examined. If B > 37 /2,
the semicircle intersects with curve 2 at two points, one corre-
sponding to the surface wave pole and the other to the leaky
wave pole, both of which have real values between 1 and ‘/; in
the complex ¢ plane. As B decreases and becomes smaller than
31 /2, the surface wave pole in the ¢ plane falls down to sheet
II from sheet I at £ =1, which is the branch point. Then it
becomes a leaky wave pole and moves to the right, whereas the
original leaky wave pole stays on the same sheet and moves to
the left. As B reaches a value B,, such that in Fig. 3(a) the
semicircle is tangent to curve 2, these two leaky wave poles in
the ¢ plane merge into one. If we reduce B further, then in Fig.
3(a) the semicircle does not intersect with curve 2 any more, and
in the ¢ plane the poles move symmetrically off the real axis on
sheet II. It is understood that the poles in the ¢ plane move
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Fig. 3. Graphic solution for the TE and TM surface and leaky wave

modes, where the semicircles represent +VB%— X2, (a) TE: (B* -
X2)/? =~ Xcot X. (b) TM: (B® — X?)V/?2 = X /¢, tan X.

smoothly as B varies. Based on the above observation, the
numerical procedure for finding the locus of the leaky wave
poles in the ¢ plane associated with each curve in Fig. 3(a) and
(b) is as follows.

1) Find B; and the corresponding &, called &,. Since &, is
real, this step is straightforward.

2) Search for a new root &; for the parameter B, = B, — AB
with &, — jé as the initial searching point, where both AB
and 8 are small positive numbers.

3) Search for new roots &,.; for the parameters B, =
B,—AB,, n=1,2,3,---,with £, as the initial searching
points.

If the AB,’s are reasonably small, a few iterations of steps 2 and
3 give satisfactory results using a Newton—Raphson algorithm.
The same procedure can be repeated to generate the locus
associated with each curve in Fig. 3(a) and (b). Since when ¢ is a
root of (1) or (2), then — ¢ and + £* are also roots, we show
only the loci in the fourth quadrant (these being the leaky wave
poles that matter for a time dependence e/“?). Figs. 4 to 7 show
the loci of the leaky wave poles for €, =4 and 9, respectively.
From the magnified versions of these figures, it is qualitatively
true that each locus goes into the fourth quadrant with the right
angle, which is not shown here. Furthermore, careful scrutiny of

‘these figures reveals that the TM poles approach the real axis

faster than do the TE poles as B increases from zero. Further-
more, for both the TE and TM cases, the poles associated with
the first two or three curves shown in Fig. 3(a) and (b) approach
the real axis faster than those associated with the higher num-
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Fig. 4. Loci of the TE leaky wave poles in the complex ¢ plane, e, =4.  Fig. 6. Loci of the TE leaky wave poles in the complex ¢ plane, €, = 9.
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Fig. 5. Loci of the TM leaky wave poles in the complex ¢ plane, F1g 7. Loci of the TM leaky wave poles in the complex ¢ plane,
e, =4 . €, =9.
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bered curves. This explains why only the lower ordered leaky
poles are important for a thin slab when the steepest descent
path is adopted, A comparison of Fig. 2, which shows the
steepest descent paths for various observation angles, with Figs.
4 to 7 demonstrates that many leaky wave poles can be captured
by the deformation, depending on the observation angle and
physical parameters of the slab. The residues of the leaky wave
poles are highly attenuated in the far field, as claimed by Fang
and Chow [4]. In fact, they completely ignored the residues of
the leaky poles for separation distance kyr > 27 and observa-
tion angle 8 = /2, i.e., on the interface. However, it is clear
from [15] that for some values of the dielectric constant and
height, the closeness of the leaky wave poles to the steepest
descent path must still be taken into account, even for k,r =100
and 0 < 8 <1 /2. Although the physical parameters employed in
[4] and [15] are different, our purpose is to emphasize that care
must be taken when ignoring the residues of the leaky wave
poles. Moreover, without knowing the locations or the loci of
the leaky wave poles, this cannot be done satisfactorily.

III. CoNcLUDING REMARKS

A simple numerical procedure for finding the loci of TE and
TM leaky wave poles as the frequency or the thickness of the
slab varies is presented. These loci provide important informa-
tion when the integration path of the Sommerfeld integral
for the grounded dielectric slab problem is deformed into the
“improper” sheet of the Riemann surface. The accuracy of the
loci has been checked extensively against contour plots of ex-
pressions (1) and (2) with the B’s as parameters.
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Dispersion Characteristics of Strip
Dielectric Waveguides

Kin S. Chiang

Abstract —A simple and accurate dispersion relation is derived for the
guided modes of a strip dielectric waveguide. This relation shows explic-
itly the effect of the width of the waveguide and involves only the
solution for a single three-layer slab waveguide. It is discovered that
there always exists a strip waveguide with a specific aspect ratio in
which the E} and E} modes propagate at the same phase velocity.

I. INTRODUCTION

A strip dielectric waveguide of the type shown in Fig. 1(a) is a
basic and important wave-guiding structure and serves as a
building block in many transmission devices at millimeter-wave
and optical frequencies [1]-[4]. While exact analytical solutions
are not available, this waveguide has been analyzed by various
semianalytical and numerical methods, which include the effec-
tive-index method [1], [2], [5], [6], Marcatili’s method [7], the
mode-matching method [8], the finite-element method [9], [10],
the finite-difference method [11], [12], and the weighted-index
method [13]. However, many of these methods [8]-[13] require
massive computation and the physical properties of the wave-
guide are not apparent in such analyses.

In this paper a simple approximate expression is derived to
describe explicitly the dispersion characteristics of the guided
modes of a strip waveguide. The accuracy of this expression is
confirmed by comparison with results from other methods. The
use of this expression should significantly simplify the study and
design of strip waveguides.

II. ANALYSIS AND RESULTS

We consider the embossed wave-guiding structure as shown in
Fig. 1(a), which is commonly referred to as a strip waveguide, an
insulated image guide, or a special type of rib waveguide. We
adopt here the optics terminology by denoting #4, n,, and nj
(ny>n,> ny) as the refractive indexes of the strip, the sub-
strate, and the superstrate (usually air), respectively. The strip
has a height 2b and a width 2a and the substrate and the
superstrate are assumed unbounded. The guided mode of such a
waveguide can be designated as the E, , mode, which has a
predominant electric field component in the i (i=x or y)
direction with m —1 and n—1 (m,n > 1) field zeros in the x
and y directions, respectively. The refractive-index profile of the
waveguide is characterized by two relative refractive-index steps,
A, and A,, defined by

o (1)
! an
and
n? —n?
A, = 2
2 Zn% ( )
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